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Phase-field model for Marangoni convection in liquid-gas systems with a deformable interface

Rodica Borcia* and Michael Bestehorn
Lehrstuhl für Theoretische Physik II, Brandenburgische Technische Universita¨t Cottbus, Erich-Weinert-Straße 1, 03046 Cottbus, Germa

~Received 9 July 2002; published 26 June 2003!

We developed a phase-field model for Marangoni convection in a liquid-gas system with a deformable
interface, heated from below. In order to describe both Marangoni instabilities~with short and long wave-
lengths!, an additional force component must be considered in the Navier-Stokes equation. This term describes
the coupling of the temperature to the velocity field via the phase-field function. It results by minimizing the
free-energy functional of the system. For a bidimensional problem in linear approximation we performed a
numerical code that successfully computes both Marangoni instabilities. In the limit of sharp and rigid inter-
faces, our results are compared with the literature.
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I. INTRODUCTION

Convective cells, discovered by Be´nard in his famous ex-
periments on thin oil layers heated from below at the end
19th century@1# ~and theoretically explained by ‘‘Marangon
forces’’ caused by surface tension gradients!, continue to be a
challenging topic of immense interest since the past
years@2–9#.

For a liquid-gas system with a nondeformable interfa
maintained in themperature gradient, the termocapillarity
fects induce an instability at a wave numberk'2 ~scaled by
liquid depth d). This instability is named the short
wavelength instability, because the spatial scale of cellu
convective motions corresponds to the scale of liquid la
depth. A deformational liquid-gas interface allows for a se
ond type of instability induced by surface deformations a
called the long wave instability. This second instability d
velops aroundk50, the spatial scale of convection gene
ated by the deformational mode is much larger than the de
of the liquid layer.

In the usual description, concerning Marangoni instab
ties, the Navier-Stokes~NS! equation and the heat equatio
are written twice: once for the liquid and once for the g
bulk. In addition, boundary conditions are imposed at
interface.

In this paper, we have analyzed the problem of Marang
convection~MC! in a liquid-gas system with a deformab
interface, heated from below, but using the phase-fi
model, a model new for this kind of problem. Using th
phenomenological continuum model, proposed for the fi
time by Langer@10#, we have written the NS equation an
the heat equation only once, avoiding the interface con
tions.

In the phase-field method one introduces an order par
eter, called the phase-field functionw, to characterize ther
modynamically the phases. The phase field takes distinct
ues in each bulk phase and undergoes a rapid but sm
variation in the interface region. The phase fieldw is gov-
erned by a partial differential equation that guarantees, in
limit of a suitable thin interfacial width, that the realist
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interface conditions are satisfied. With the help of the pha
field function the system is treated continuously, leading th
to a problem free of interface conditions. It can be succes
in many instances with complex structures such as th
present during dendritic growths@11,12# or dynamic frac-
tures@13#.

Recently, a very similar method—the so-called ghost flu
method—was developed by Osher and collaborators for
scribing interfaces in multimaterial flows@14,15#. In place of
the phase-field function, they use a level set function to k
track of the interface. The zero level marks the location
the interface, the positive values correspond to one fluid,
the negative ones to the other. They capture the approp
interface conditions by defining a ghost fluid~for each of the
two fluids!, which has at each point the same pressure
velocity of the real fluid, but the entropy of the other on
Since the ghost fluids have the same entropy as the real
that is not replaced, a one-phase problem is solved exact
the same manner as in the phase-field formalism. But un
the ghost fluid method or the classical method, in our pha
field model the interface is diffuse and, therefore, it allows
diffusive transport between the phases in the interfacial
gion.

We emphasize that in the present paper we are not st
ing a liquid in equilibrium with its own gas phase. For th
case, the phase field would be the density and its spatiot
poral evolution would be described by the continuity equ
tion. Our description introduces the phase field phenome
logically and can be used also for the case of t
incompressible fluids, partially miscible. The system an
lyzed in this paper contains two different phases~see Fig. 1!
and, how we will see in Sec. V, in the limit of sharp inte
faces, our results converge to those coming from the stan
formulation for flat interfaces@5#.

The paper is organized as follows. In Sec. II, we descr
in detail the method, we deduce the phase-field equa
from the free-energy functional, and we demonstrate the
cessity to introduce a new force component in the NS eq
tion for describing Marangoni convection with a short wav
length. In the limit of sharp interfaces, the classical interfa
conditions for a rigid interface are derived in Sec. III. Secti
IV presents the basic equations used in our simulations
introduces the adimensional parameters. The numerica
©2003 The American Physical Society07-1
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sults concerning MC described for a bidimensional probl
in linear approximation are discussed in Sec. V. Finally, o
principal conclusions are summarized in Sec. VI.

II. THE SYSTEM

In our phase-field model for convective motions in
liquid-gas system, the order parameterw is assumed to be
w521 at the liquid boundary (z50) andw511 at the gas
boundary (z52) ~see Fig. 2!. The Helmoltz free-energy
functional is given by@10,16,17#

F5E
V
F f ~w!1

K~T!

2
~¹W w!2GdV, ~1!

where f (w) represents the free-energy density of a homo
neous fluid, describing the regions far from interphases.
f (w) a continuous function ofw is required with two local
minima: one corresponding tow521, for the bulk in the
liquid state, and another one tow511, for the bulk in the
gas phase. We choosef (w) in the following form:

f ~w!5CS w4

4
2

w2

2 D1mw, ~2!

FIG. 1. Sketch of the system under consideration: a gas la
superposed over a liquid layer. The system is heated from be
and the temperatures at the top and at the bottom are mainta
constant.

FIG. 2. Phase-field distribution versusz for the stationary state
At z50 ~liquid boundary!, the phase-field function takes the valu
w521 and atz52 ~gas boundary!, the valuew511. The diffuse
interface between liquid and gas is nearz51.
06630
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with C as a positive parameter related to interparticle pot
tials @18# andm as a bias parameter related to the chemi
potential. The parameterm controls the difference betwee
the free-energy densities corresponding to the two minim
In our modelm is considered zero, which means that bo
minima have the same free-energy density, as one can
from Fig. 3. The free-energy density at the interface~nearz
51) is zero. In functional~1! appears a second term~a non-
classic term!, which describes the interface phenomena~in-
terface diffusion! @17#. This term is associated with varia
tions of the density~and, consequently, of the phase fiel!
and contributes to the free-energy excess of the interfa
region, which defines the surface tension coefficient@18,19#

s5E
2`

1`

KS ]w0

]z D 2

dz, ~3!

wherew0(z) denotes the stationary phase-field function.
In many previous works,K is assumed to be constan

But, for describing Marangoni convection its necessary
considerK to be dependent on temperature:

K5K02KTT ~KT.0!, ~4!

while the temperature field is described by the usual h
equation

rc
dT

dt
5¹W •~k¹W T!, ~5!

with r as the fluid density,c as the heat capacity, andk as
the thermal conductivity.

We will now derive the equation for the phase-field fun
tion w. To this aim we differentiate the free-energy fun
tional given by relation~1! with respect to time and impos
the energy production resulting after differentiation to
negative in any subvolumeq of V. ~In the system an irre-
versible phenomenon is present—the interface diffusion,
sulting thus in the monotonic decrease of the free-ene
density.! For the sake of simplicity, we assume for the m

er
w
ed

FIG. 3. Free-energy density representation versus phase-
functionw. We have chosenf (w) to be a symmetric ‘‘double-well’’
potential with two local minima: one atw521, corresponding to
the liquid phase, and the second atw511, corresponding to the
gas phase.
7-2
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PHASE-FIELD MODEL FOR MARANGONI CONVECTION . . . PHYSICAL REVIEW E67, 066307 ~2003!
ment a weak dependence ofK on temperature:K'K0
5const. From Eq.~1! one gets

Ḟ5E
q
F ] f

]w
ẇ1K0¹W w•¹W ẇGdV5E

q
F ] f

]w
ẇ1¹W •~K0ẇ¹W w!

2K0ẇDw GdV. ~6!

The mass conservation of the system requires

ẇ52¹W •JW , ~7!

whereJW represents the diffusional flux. Substitution of E
~7! into Eq. ~6! leads to

Ḟ5E
A
S K0ẇ¹W w2

] f

]w
JW1K0DwJW D •nW dA

1E
q
JW•¹W S ] f

]w
2K0Dw DdV. ~8!

The energy production can be calculated by subtracting f
Ḟ, from Eq.~8!, the first term that describes the energy fl
through the boundary of subvolumeq @16#:

se5E
q
JW•¹W S ] f

]w
2K0Dw DdV.

Choosing

JW52Mo¹W S ] f

]w
2K0Dw D , ~9!

with Mo as a positive constant, one obtains for the ene
production,

se52E
q

uJW u2

Mo
dV<0. ~10!

This result emphasizes the decrease in time of free-en
density due to interface diffusion. Substituting now relati
~9! into Eq. ~7!, one gets the partial differential equation f
the phase-field functionw:

ẇ52MoDS K0Dw2
] f

]w D , ~11!

known in the literature as the Cahn-Hilliard~CH! equation
@20#.

In order to introduce the contribution of the phase field
the Navier-Stokes equation, we apply the Lagrangian form
ism. Thus, in order to minimize the free-energy function
for the equilibrium state, the Lagrangian energy density

L„K~T!,w,¹W w…5 f ~w!1
K~T!

2
~¹W w!2 ~12!

must satisfy the Euler-Lagrange equation
06630
m

y

gy

l-
l

]L
]w

2
]

]xi
S ]L
]~] iw! D50. ~13!

Substitution of Eq.~12! into Eq. ~13! gives us the following
relation ~Noether’s theorem!:

]

]xi
F ]L
]~] iw!

]w

]xj
2Ld i j G1

]L
]K

]K
]xi

d i j 50, ~14!

with j 51,2,3.
AssumingK5const, from the above equation, the stre

tensor appears@17,21# to be

JW 5K¹W w ^ ¹W w2L I, ~15!

in components

J i j 5K]w

]xi

]w

]xj
2Ld i j ,

which satisfies the conservation law

¹W •JW 50. ~16!

Because the Navier-Stokes equation expresses the mo
tum conservation law, the contribution of capillary forces
this equation is given by the conservative term2¹W •JW , lead-
ing thus to@22#

r
dvW

dt
5¹W ~2p1L!2¹W •~K¹W w ^ ¹W w!1¹W •~h¹W vW !1rgẑ

~17!

~both fluids are assumed incompressible!.
But, whenKÞconst, the conservative law~16! is not sat-

isfied, we must consider also the last term of relation~14!.
Using Eqs.~12! and ~4! one gets, respectively,

]L
]K 5

1

2
~¹W w!2,

]K
]xi

5
]K
]T

]T

]xi
52KT

]T

]xi
.

Therefore, whenKÞconst, a new force component has to
included in the NS equation, which represents, in fact
driver of MC with a short wavelength~caused by surface
tension gradient!, indicated by the last term in the following
equation:

r
dvW

dt
5¹W ~2p1L!2¹W •~K¹W w ^ ¹W w!1¹W •~h¹W vW !

1rgẑ1
1

2
KT¹W T~¹W w!2. ~18!

Finally, we note that in the case of a single-component flu
a more rigorous derivation would be to consider the den
r as the phase variable@w has to be replaced byr in Eq.
~18!#. The fluid must be treated as being compressible
7-3
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instead of the Cahn-Hilliard equation~11! introduced phe-
nomenologically above, the continuity equation determin
the temporal evolution of the phase field:

dr

dt
52r¹W •vW 52¹W •~¹W F!, ~19!

where the potential functionF describes the compressib
part of the velocity field

vW 5¹W 3~ceW y!1¹W F

and the stream functionc as the incompressible one, as o
can see in Sec. V. To obtain the Cahn-Hilliard equation, o
may assume that the compressible part of the velocity
proportional to the gradient of the chemical potential at
interface which, in turn, is given by the functional derivati
of the free energy~1! ~for completeness,F must be consid-
ered as function ofr):

¹W F52Mo¹W
dF
dr

, ~20!

with Mo as the mobility. Inserting Eq.~20! in Eq. ~19! finally
yields the Cahn-Hilliard equation~11!. It is clear that this
derivation is not systematic and the application of the Ca
Hilliard equation can be considered as a model. The adv
tage of our model is that it can be used also in two imm
cible fluids having the same density, separated by a nar
but diffuse interface. Then,r is a constant~incompressible!
even across the interface, butw can still be used as the phas
variable.

III. SHARP-INTERFACE LIMIT

In this section, in the limit of sharp and rigid interface, w
derive the ‘‘classical interface conditions’’ for a two-flui
system with surface tension gradients at the interface. In
way, one proves the necessity to introduce in our phase-
model the new term1

2 KT¹W T(¹W w)2 in the NS equation~18!,
responsible for describing the Marangoni instability induc
by thermocapillarities.

We have analyzed in this paper a bidimensional proble
considering the fluid parameters depending on (x,z) coordi-
nates.

One can integrate Eq.~18! through a flat and rigid inter-
face (]w/]x50) between the limits 12« and 11« ~see Fig.
4!. For a weak dependence ofK on temperature, in the limi
«→0, one obtains for thez component,

E
12«

11«

hnvzdz5KS ]w

]z D 2U
12«

11«

.

For sharp interfaces (]w/]zuz512«5]w/]zuz511«50), the
right-hand side term of the above equation vanishes, lea
thus to the identity
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E
12«

11«

hDvzdz5h lE
12«

1

Dvzdz1hgE
1

11«

Dvzdz50.

~21!

Identity ~21! is satisfied for any positive values for liquid an
gas viscosities. Therefore, we have

Dvz50, 12«<z<1,

Dvz50, 1<z<11« ~22!

for any positive« («→0).
From Eq.~22!, one gets finally

vz50 ~23!

in the vicinity of z51, a relation which expresses the no
deformability condition@23#. Integrating now thex compo-
nent of the NS equation, with the same assumptions as in
preceding case, using the nondeformability condition~23!,
too, one arrives at

E
1

2 ]

]zS h
]vx

]z Ddz52
KT

2

]T

]xE1

2S ]w0

]z D 2

dz ~24!

~the notations ‘‘1’’ and ‘‘2’’ correspond to Fig. 4!. In the
right-hand side of relation~24!, we will introduce a
temperature-dependent surface tension coefficient with
help of relation~3!, which can be also written in the follow
ing form @18#:

s' 2
3 A~K02KTT!C. ~25!

From Eq.~25! results immediately

U]s

]TU5sKT

2K . ~26!

Substituting now relations~3!, ~25!, and ~26! into Eq. ~24!,
we obtain the interface condition for tangential stresses@23#

FIG. 4. Sketch of the system under discussion: a cont
through the liquid-gas interface is considered. In the limit of sh
interfaces, integrating NS equation~18! along this contour, we have
derived the classical interface conditions when«→0.
7-4
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sxz8 ~2!2sxz8 ~1!5
]s

]x
, ~27!

where sxz8 5h@(]vx /]z)1(]vz/]x)# is the viscous tenso
for incompressible fluids.

We must stress here on the importance of the new fo
component12 KT¹W T(¹W w)2 introduced in Eq.~18!. This term
is responsible for the appearance of a surface tension g
ent ]s/]x in the interface condition~27! and plays essentia
role in the mechanism of forming MC with a short wav
length.

In addition to the nondeformability condition~23! and the
interface condition for tangential stresses~27!, we can easily
derive the heat-flux continuity at the interface@23#, applying
the same procedure for NS equation~18! for the heat equa-
tion ~5!. One thus gets

S k
]T

]zD ~1!5S k
]T

]zD ~2!, ~28!

where the notations ‘‘1’’ and ‘‘2’’ correspond again to Fig.

IV. BASIC EQUATIONS

Summarizing, the fundamental set of equations describ
the convective phenomena in a two-fluid system reads

r
dvW

dt
5¹W ~2p1L!2¹W •~K¹W w ^ ¹W w!1

1

2
KT¹W T~¹W w!2

1¹W •~h¹W vW !1rgẑ,

dw

dt
52MoDS KDw2

] f

]w D , ~29!

rc
dT

dt
5¹W •~k¹W T!,

¹W •vW 50,

where the densityr(x,z,t), the viscosityh(x,z,t), the heat
capacityc(x,z,t), and the thermal conductivityk(x,z,t) are
assumed to vary from the liquid to the gas bulk throu
linear functions of the phase fieldw(x,z,t):

r5
r01r1

2
2

r02r1

2
w, h5

h01h1

2
2

h02h1

2
w,

c5
c01c1

2
2

c02c1

2
w, k5

k01k1

2
2

k02k1

2
w.

In the above relations, index ‘‘0’’ describes the fluid para
eters atz50 ~liquid boundary!, while index ‘‘1’’ describes
the gas parameters atz52 ~gas boundary!.

In the NS equation, we apply the curl operator in order
eliminate the gradient term¹W (2p1L) and, after the follow-
ing adimensionalizations:
06630
e

di-

g

-

o

rW5dr8W , t5
d2

x0
t8, vW 5

x0

d
v8W , T85

T2T1

T02T1
,

r5r0r8, h5h0h8, c5c0c8, k5k0k8

(x0 is the thermal diffusivity at liquid boundary!, the system
of Eqs.~29! becomes~the accents are dropped!

¹W 3S r
dvW

dt
D 52PrL¹W 3$¹W •@~Ca2MT!¹W w ^ ¹W w#

2 1
2 M¹W T~¹W w!2%1Pr¹W 3@¹W •~h¹W vW !#

1GPr¹W 3~r ẑ!, ~30!

dw

dt
52Mo8DFL2S 12

MT

Ca DDw2w31w G ,
rc

dT

dt
5¹W •~k¹W T!

¹W •vW 50.

In the system of equations~30! appear the dimensionles
parameters: Pr5r0x0 /h0 is the Prandtl number of the liquid
Ca5AK0Cd/h0x0 is the capillary number, M
5(KTAK0C/K0)/@(T02T1)d/h0x0# is the Marangoni num-
ber, G5r0gd3/h0x0 is the Galileo number, L
5(1/d)AK0 /C is the width of interface, andMo8
5MoC/x0 is the phenomenological mobility adimensiona
ized, whereAK0C has the dimension of surface tension a
KTAK0C/K0 describes the temperature gradient of surfa
tension. All the adimensional parameters indicated ab
were introduced, e.g., in Ref.@5#, except the last ones whic
are specific for our model.

V. NUMERICAL RESULTS

Because both fluids are assumed to be incompressibl
the NS equation from the system of Eqs.~30! we introduce
the stream functionc(x,z,t) in place of the velocity field

vW (x,z,t). For the bidimensional problem (x,z) considered in
this paper, one can write

vW 5
]c

]z
iW2

]c

]x
kW .

We have analyzed the basic equations~30! in the linear ap-
proximation, assuming for the perturbation plane waves
the horizontal direction,

S c~x,z,t !

w~x,z,t !

T~x,z,t !
D 5S c (0)~z!

w (0)~z!

T(0)~z!
D 1S c (1)~z!

w (1)~z!

T(1)~z!
D

3exp~ ikx!exp~lt !, ~31!
7-5
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with wave numberk ~assumed to be real value! and the
~complex! growth ratel. After linearization one obtains a
system of equations depending only on variablez, with de-
rivatives till the fourth order. For this linearized system w
have used a finite difference method@24# with a variable
step, taking into account the following boundary condition

c (1)uz505c (1)uz5250,
]c (1)

]z Uz505
]c (1)

]z U
z52

50,

w (1)uz505w (1)uz5250,
]w (1)

]z U
z50

5
]w (1)

]z U
z52

50,

T(1)uz505T(1)uz5250.

In this way, system~30! with the above boundary condition
is reduced to a linear eigenvalue problem. For the numer
results presented in this section, we have chosen the pa
eters for a silicon oil-air system: Pr5102,k1 /k0
50.18,r1 /r051.731023,h1 /h0 50.2231023,c1 /c0 5 0.5
@5#.

A. Nondeformable interface

At the first step we have dropped the Cahn-Hilliard eq
tion from Eqs.~30!. This means that the interface is assum
to be perfectly rigid but diffuse and, for the phase-field fun
tion which appears in the NS equation, we have conside
~only for this particular situation! a variation of the form

w (0)~z!5tanh
~z21!

LA2
, ~32!

with L the parameter that describes the interface thickn
Because the interface is rigid, only one instability can app
here. This is the short-wavelength instability, driven by s
face tension gradient, which develops when the Marang
number exceeds a critical valueMcr .

Figure 5 shows the critical Marangoni numberMcr and
the critical wave numberkcr versus 1/L for two different
cases: case 1 corresponds to the situation when the CH e
tion is dropped~the interface is perfectly rigid!, while case 2
corresponds to the situation when the CH equation is
cluded. Here, large values for the capillary number Ca
the Galileo numberG are assumed, the interface can be
garded as quasi-nondeformable.~For case 2 in Fig. 5 the
liquid depth is of orderd'1022 m.! From the representa
tions indicated in Fig. 5 one can see howMcr and kcr de-
crease with increasing 1/L, arriving at a saturation in the
limit of sharp interfaces~large values for 1/L corresponds to
sharp interfaces!. The critical Marangoni number saturate
aroundMcr5750 and the critical wave number aroundkcr
52.06, values which are in concordance with those obtai
in Ref. @5# for flat and sharp interfaces. The critical Ma
rangoni numberMcr'750 yields in terms of the usual defi
nition @8#

M 85M
Bi

Bi11
,

06630
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~with Bi5k8/a as the Biot number,k85kgas/k l iq , and a
5dgas/dliq) a value aroundM 8'110.

For sharp interfaces~case 1!, we have represented in Fig
6 the growth rate Rel for the Marangoni instability with
short wavelength versus wave numberk for the critical Ma-
rangoni numberMcr5750. The eigenfunctions characterist
for MC with short wavelength are presented in Fig. 7 fork
52.06 and for all the other parameters indicated in Fig. 6
the left panels, the temperature and stream-function pe
bations are represented versusz, while the right panels show
the same perturbations in the bidimensional (x,z) represen-
tation. Figure 7~a! presents a discontinuity at the interfac
~nearz51), which appears because the thermal conductiv
in the liquid is almost one order of magnitude greater th
that of the gas (kgas/k l iq50.18). This discontinuity from

FIG. 5. Dependencies of the critical Marangoni numberMcr and
the critical wave numberkcr on the interface thickness, for MC
driven by a surface tension gradient. The plots correspond to
different models: model 1 assumes a perfect rigid liquid-gas in
face, while in model 2 the interface is quasi-nondeformable.
model 2, one considers Ca523105,G533109. Both models con-
verge in the limit of sharp interface to classical results obtained
liquid-gas systems with flat interfaces.

FIG. 6. Growth rate of Marangoni instability with short wave
length, Rel versusk corresponding to model 1, for critical Ma
rangoni numberMcr5750 andL51/120. For sharp interfaces, th
Marangoni instability develops aroundk52.
7-6
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FIG. 7. Temperature perturbation@~a!, ~b!# and stream-function perturbation@~c!, ~d!# for short wave instability, corresponding to mod
1, when the liquid-gas interface is perfectly rigid (M5750, L51/120,k52.06). Left panels plot the perturbations versusz and right panels
present the same perturbations in the (x,z) representation. Thermocapillarities determine two convective motions: one in the liquid an
in the gas.
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Fig. 7~a! expresses the heat-flux continuity condition@see
relation~28! demonstrated in the sharp-interface limit in Se
III #, which is satisfied in our model without a supplementa
restriction in this direction. Similarly, we observe in Fig. 7~c!
a zero at the interface for the stream functionc. Because
vz52]c/]x52 ikc, c50 alongz51 meansvz50 at in-
terface, a fact that emphasizes the fulfillment of the non
formability condition~23!. @Again, condition~23! is satisfied
without imposing explicitly this interface condition in ou
formalism.#

In Figs. 7~b! and 7~d!, the amplitude of the eigenfunction
belonging to the most dangerous modes are plotted in g
scale. Figure 7~d! is very suggestive because, as we ha
previously specified, the stream functionc describes in fact
the velocity componentvz . From this picture one observe
two convective motions: one developed in the liquid and
other in the gas, a pattern specific for the short-wavelen
instability.

For the sake of completeness, we have displayed in F
8 and 9 the same representation as in Figs. 6 and 7, fo
same instability, corresponding now to model 2. Figure
emphasizes again as how, in the sharp-interface limit,
classical results are reobtained: the short wave instability
velops aroundk52 for a critical Marangoni numberMcr
5750. Figure 9 presents the perturbations for temperat
phase-field, and stream function, described by model 2
this case, the liquid-gas interface is quasi-nondeforma
This means that the perturbations for the phase-field func
exist but they are very small, of the order of 1024 @see Fig.
9~c!#, while the other perturbation profiles~for temperature
and stream function! represented in Figs. 9~a!, 9~b!, 9~e!, and
9~f! keep the same shapes such as those indicated by mo
in Fig. 7.
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B. Deformable interface

For small values of the capillary number Ca and the G
lileo numberG, the liquid-gas interface becomes deformab
and surface deflections in the presence of a temperature
dient induce a second type of instability, developed arou
k50, as one can see in Fig. 10. This is Marangoni conv
tion with long wavelength, depicted in Fig. 10 for a liqu
depthd'1025 m. For this kind of instability, Fig. 11~c! re-
veals strong perturbations of the phase-field function~of the
order of 1021), which means that the liquid-gas interface
deformed now. Even for small Marangoni numbers, the
surface deflections lead to cellular convective motions de
oped in almost all liquid-gas systems, which is very sugg
tive as indicated by Fig. 11~f!. This convective motion on a

FIG. 8. Plot of growth rate for MC with short wavelength, Rel
versusk for quasi-nondeformable interface, in the limit of sha
interfaces (L51/60) for the critical Marangoni numberMcr

5750, Ca523105, and G533109. Model 2 emphasizes the
same result showed by model 1: the short wave instability ar
aroundk52.
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FIG. 9. Same as Fig. 7, but for model 2, when the liquid-gas interface is quasi-nondeformable (M5750, L51/60, k52, Ca52
3105, G533109). Panels~a! and ~b! illustrate the temperature perturbation,~c! and ~d! the phase-field perturbation, and~e! and ~f! the
stream-function perturbation. In this case, the phase-field perturbations exist but they are very small, while the perturbation p
temperature and stream function correspond with those presented in Fig. 7.
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, a
spatial scale much larger than the liquid layer depth is s
cific for long wave instability.

VI. CONCLUSIONS

Used in the previous works for studying alloy solidific
tion, dendritic crystal growth, or dynamic fractures, t
phase-field model is adjusted in this paper for describ

FIG. 10. Growth rate of the Marangoni instability with lon
wavelength Rel versus wave numberk when M58, L52/9, Ca
5200, G53. For small values of capillary and Galileo numbers
second convective instability develops aroundk50.
06630
e-

g

Marangoni convection developed in two-fluid systems with
deformable interface heated from below. Adequate to mu
phase systems, for which the interface location cannot
explicitly tracked, the phase-field method treats the proble
in a continuous way, like an entire system, simplifying th
the system of equations and avoiding the interfa
conditions—the essential advantages of this method. N
that the shape of the interface can take arbitrary geome
and must not even be contiguous. Extensions of this met
should allow, for example, for the description of drops or g
bubbles inside a liquid in an external temperature or conc
tration field. Therefore, the phase-field method has a m
higher flexibility than the sharp-interface method, where
interface is described by a function of horizontal coordina
and is usually restricted to small deviations from the fl
interfaces. In the frame of Lagrangian formalism, we ha
demonstrated in Sec. II the necessity to introduce in
Navier-Stokes equation a new force compone
1
2 KT¹W T(¹W w)2 which is the driver of Marangoni convectio
with short wavelength. In the limit of sharp and rigid inte
faces, we derived in Sec. III the classical interface con
tions, starting from NS equation~18! with the above term
included.
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FIG. 11. Temperature@~a!,~b!#, phase-field@~c!,~d!#, and stream-function perturbations@~e!,~f!# for long wave instability versusz ~in left
panels! and bidimensional (x,z) representations~in the right panels! when M58, k50.2, L52/9, Ca5200, G53. The phase-field
perturbations are strong now and, surface deformations in the presence of temperature gradient induce a convective motion in
liquid-gas system.
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We have performed a numerical code for the bidime
sional problem in the linear approximation, which mode
both Marangoni instabilities: one driven by surface tens
gradients at the interface~short wave instability! and the sec-
ond induced by surface deflections~long wave instability!.
Our numerical results emphasize on, in the sharp-interf
limit, how the phase-field model applied for Marangoni co
vection leads to the results given by regular models for s
tems with flat interfaces@5#. This work will be continued in
J.

v.
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several directions: nonlinear effects will be included as w
as the influence of evaporation through the interface, wh
can be considered in this approach in a more natural wa
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